RMO-1992

1. Determine the set of integers n for which $n^{2}+19 n+92$ is a square of an integer.
2. If $\frac{1}{a}+\frac{1}{b}=\frac{1}{c}$, where a, b, c are positive integers with no common factor, prove that $(a+b)$ is the square of an integer.
3. Determine the largest 3-digit prime factor of the integer ${ }^{2000} C_{1000}$.
4. $A B C D$ is a cyclic quadrilateral with $A C \perp B D ; A C$ meets $B D$ at E. Prove that

$$
E A^{2}+E B^{2}+E C^{2}+E D^{2}=4 R^{2}
$$

where R is the radius of the circumscribing circle.
5. $A B C D$ is a cyclic quadrilateral; x, y, z are the distances of A from the lines $B D, B C, C D$ respectively. Prove that

$$
\frac{B D}{x}=\frac{B C}{y}+\frac{C D}{z} .
$$

6. $A B C D$ is a quadrilateral and P, Q are mid-points of $C D, A B$ respectively. Let $A P, D Q$ meet at X, and $B P, C Q$ meet at Y. Prove that

$$
\text { area of } A D X+\text { area of } B C Y=\text { area of quadrilateral } P X Q Y \text {. }
$$

7. Prove that

$$
1<\frac{1}{1001}+\frac{1}{1002}+\frac{1}{1003}+\ldots+\frac{1}{3001}<1 \frac{1}{3}
$$

8. Solve the system

$$
\begin{aligned}
(x+y)(x+y+z) & =18 \\
(y+z)(x+y+z) & =30 \\
(z+x)(x+y+z) & =2 A
\end{aligned}
$$

in terms of the parameter A.
9. The cyclic octagon $A B C D E F G H$ has sides a, a, a, a, b, b, b, b respectively. Find the radius of the circle that circumscribes $A B C D E F G H$ in terms of a and b.

