RMO-1999

1. Prove that the inradius of a right-angled triangle with integer sides is an integer.
2. Find the number of positive integers which divide 10^{999} but not 10^{998}.
3. Let $A B C D$ be a square and M, N points on sides $A B, B C$, respectably, such that $\angle M D N=$ 45°. If R is the midpoint of $M N$ show that $R P=R Q$ where P, Q are the points of intersection of $A C$ with the lines $M D, N D$.
4. If p, q, r are the roots of the cubic equation $x^{3}-3 p x^{2}+3 q^{2} x-r^{3}=0$, show that $p=q=r$.
5. If a, b, c are the sides of a triangle prove the following inequality:

$$
\frac{a}{c+a-b}+\frac{b}{a+b-c}+\frac{c}{b+c-a} \geq 3 .
$$

6. Find all solutions in integers m, n of the equation

$$
(m-n)^{2}=\frac{4 m n}{m+n-1}
$$

7. Find the number of quadratic polynomials, $a x^{2}+b x+c$, which satisfy the following conditions:
(a) a, b, c are distinct;
(b) $a, b, c \in\{1,2,3, \ldots 1999\}$ and
(c) $x+1$ divides $a x^{2}+b x+c$.
