RMO-1998

1. Let $A B C D$ be a convex quadrilateral in which $\angle B A C=50^{\circ}, \angle C A D=60^{\circ}, \angle C B D=30^{\circ}$, and $\angle B D C=25^{\circ}$. If E is the point of intersection of $A C$ and $B D$, find $\angle A E B$.
2. Let n be a positive integer and $p_{1}, p_{2}, \cdot p_{n}$ be n prime numbers all larger than 5 such that 6 divides $p_{1}^{2}+p_{2}^{2}+\cdot p_{n}^{2}$. Prove that 6 divides n.
3. Prove the following inequality for every natural number n :

$$
\frac{1}{n+1}\left(1+\frac{1}{3}+\frac{1}{5}+\cdot \frac{1}{2 n-1}\right)>\frac{1}{n}\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\cdot \frac{1}{2 n}\right) .
$$

4. Let $A B C$ be a triangle with $A B=B C$ and $\angle B A C=30^{\circ}$. Let A^{\prime} be the reflection of A in the line $B C ; B^{\prime}$ be the reflection of B in the line $C A ; C^{\prime}$ be the reflection of C in the line $A B$. Show that $A^{\prime}, B^{\prime}, C^{\prime}$ form the vertices of an equilateral triangle.
5. Find the minimum possible least common multiple (lcm) of twenty (not necessarily distinct) natural numbers whose sum is 801 .
6. Given the 7 -element set $A=\{a, b, c, d, e, f, g\}$, find a collection T of 3 -element subsets of A such that each pair of elements from A occurs exactly in one of the subsets of T.
