RMO-1997

- 1. Let P be an interior point of a triangle ABC and let BP and CP meet AC and AB in E and F respectively. If [BPF] = 4, [BPC] = 8 and [CPE] = 13, find [AFPE]. (Here $[\cdot]$ denotes the area of a triangle or a quadrilateral, as the case may be.)
- 2. For each positive integer n, define $a_n = 20 + n^2$, and $d_n = \gcd(a_n, a_{n+1})$. Find the set of all values that are taken by d_n and show by examples that each of these values are attained.
- 3. Solve for real x:

$$\frac{1}{[x]} + \frac{1}{[2x]} = 9x) + \frac{1}{3},$$

where [x] is the greatest integer less than or equal to x and (x) = x - [x], [e.g. [3.4] = 3 and (3.4) = 0.4].

4. In a quadrilateral ABCD, it is given that AB is parallel to CD and the diagonals AC and BD are perpendicular to each other.

Show that

- (a) $AD.BC \ge AB.CD$;
- (b) $AD + BC \ge AB + CD$.
- 5. Let x, y and z be three distinct real positive numbers. Determine with proof whether or not the three real numbers

$$|\frac{x}{y} - \frac{y}{x}|, |\frac{y}{z} - \frac{z}{y}|, |\frac{z}{x} - \frac{x}{z}|$$

can be the lengths of the sides of a triangle.

- 6. Find the number of unordered pairs $\{A, B\}$ (i.e., the pairs $\{A, B\}$ and $\{B, A\}$ are considered to be the same) of subsets of an *n*-element set X which satisfy the conditions:
 - (a) $A \neq B$;
 - (b) $A \cup B = X$

[e.g., if $X = \{a, b, c, d\}$, then $\{\{a, b\}, \{b, c, d\}\}, \{\{a\}, \{b, c, d\}\}, \{\phi, \{a, b, c, d\}\}$ are some of the admissible pairs.]

1