RMO-1997

1. Let P be an interior point of a triangle $A B C$ and let $B P$ and $C P$ meet $A C$ and $A B$ in E and F respectively. If $[B P F]=4,[B P C]=8$ and $[C P E]=13$, find $[A F P E]$. (Here $[\cdot]$ denotes the area of a triangle or a quadrilateral, as the case may be.)
2. For each positive integer n, define $a_{n}=20+n^{2}$, and $d_{n}=\operatorname{gcd}\left(a_{n}, a_{n+1}\right)$. Find the set of all values that are taken by d_{n} and show by examples that each of these values are attained.
3. Solve for real x :

$$
\left.\frac{1}{[x]}+\frac{1}{[2 x]}=9 x\right)+\frac{1}{3},
$$

where $[x]$ is the greatest integer less than or equal to x and $(x)=x-[x]$, [e.g. [3.4] $=3$ and $(3.4)=0.4]$.
4. In a quadrilateral $A B C D$, it is given that $A B$ is parallel to $C D$ and the diagonals $A C$ and $B D$ are perpendicular to each other.
Show that
(a) $A D \cdot B C \geq A B \cdot C D$;
(b) $A D+B C \geq A B+C D$.
5. Let x, y and z be three distinct real positive numbers. Determine with proof whether or not the three real numbers

$$
\left|\frac{x}{y}-\frac{y}{x}\right|,\left|\frac{y}{z}-\frac{z}{y}\right|,\left|\frac{z}{x}-\frac{x}{z}\right|
$$

can be the lengths of the sides of a triangle.
6. Find the number of unordered pairs $\{A, B\}$ (i.e., the pairs $\{A, B\} \operatorname{and}\{B, A\}$ are considered to be the same) of subsets of an n-element set X which satisfy the conditions:
(a) $A \neq B$;
(b) $A \cup B=X$
[e.g., if $X=\{a, b, c, d\}$, then $\{\{a, b\},\{b, c, d\}\},\{\{a\},\{b, c, d\}\},\{\phi,\{a, b, c, d\}\}$ are some of the admissible pairs.]

