RMO-1996

1. The sides of a triangle are three consecutive integers and its inradius is four units. Determine the circumradius.
2. Find all triples (a, b, c) of positive integers such that

$$
\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)=3 .
$$

3. Solve for real number x and y :

$$
\begin{aligned}
x y^{2} & =15 x^{2}+17 x y+15 y^{2} \\
x^{2} y & =20 x^{2}+3 y^{2}
\end{aligned}
$$

4. Suppose N is an n-digit positive integer such that
(a) all the n-digits are distinct; and
(b) the sum of any three consecutive digits is divisible by 5 .

Prove that n is at most 6 . Further, show that starting with any digit one can find a six-digit number with these properties.
5. Let $A B C$ be a triangle and h_{a} the altitude through A. Prove that

$$
(b+c)^{2} \geq a^{2}+4 h_{a}^{2}
$$

(As usual a, b, c denote the sides $B C, C A, A B$ respectively.)
6. Given any positive integer n show that there are two positive rational numbers a and $b, a \neq b$, which are not integers and which are such that $a-b, a^{2}-b^{2}, a^{3}-b^{3}, \ldots, a^{n}-b^{n}$ are all integers.
7. If A is a fifty-element subset of the set $\{1,2,3, \ldots, 100\}$ such that no two numbers from A add up to 100 show that A contains a square.

