RMO-1994

- 1. A leaf is torn from a paperback novel. The sum of the numbers on the remaining pages is 15000. What are the page numbers on the torn leaf.
- 2. In the triangle ABC, the incircle touches the sides BC, CA and AB respectively at D, E and F. If the radius of the incircle is 4 units and if BD, CE and AF are consecutive integers, find the sides of the triangle ABC.
- 3. Find all 6-digit natural numbers $a_1a_2a_3a_4a_5a_6$ formed by using the digits 1, 2, 3, 4, 5, 6, once each such that the number $a_1a_2...a_k$ is divisible by k, for $1 \le k \le 6$.
- 4. Solve the system of equations for real x and y:

$$5x\left(1 + \frac{1}{x^2 + y^2}\right) = 12$$
$$5y\left(1 - \frac{1}{x^2 + y^2}\right) = 4.$$

- 5. Let A be a set of 16 positive integers with the property that the product of any two distinct numbers of A will not exceed 1994. Show that there are two numbers a and b in A which are not relatively prime.
- 6. Let AC and BD be two chords of a circle with center O such that they intersect at right angles inside the circle at the point M. Suppose K and L are the mid-points of the chord AB and CD respectively. Prove that OKML is a parallelogram.
- 7. Find the number of all rational numbers m/n such that
 - (a) 0 < m/n < 1
 - (b) m and n are relatively prime
 - (c) mn = 25!
- 8. If a, b and c are positive real numbers such that a + b + c = 1, prove that

$$(1+a)(1+b)(1+c) \ge 8(1-a)(1-b)(1-c).$$