## RMO-1994

1. A leaf is torn from a paperback novel. The sum of the numbers on the remaining pages is 15000. What are the page numbers on the torn leaf.
2. In the triangle $A B C$, the incircle touches the sides $B C, C A$ and $A B$ respectively at $D, E$ and $F$. If the radius of the incircle is 4 units and if $B D, C E$ and $A F$ are consecutive integers, find the sides of the triangle $A B C$.
3. Find all 6 -digit natural numbers $a_{1} a_{2} a_{3} a_{4} a_{5} a_{6}$ formed by using the digits $1,2,3,4,5,6$, once each such that the number $a_{1} a_{2} \ldots a_{k}$ is divisible by $k$, for $1 \leq k \leq 6$.
4. Solve the system of equations for real $x$ and $y$ :

$$
\begin{aligned}
5 x\left(1+\frac{1}{x^{2}+y^{2}}\right) & =12 \\
5 y\left(1-\frac{1}{x^{2}+y^{2}}\right) & =4
\end{aligned}
$$

5. Let $A$ be a set of 16 positive integers with the property that the product of any two distinct numbers of $A$ will not exceed 1994. Show that there are two numbers $a$ and $b$ in $A$ which are not relatively prime.
6. Let $A C$ and $B D$ be two chords of a circle with center $O$ such that they intersect at right angles inside the circle at the point $M$. Suppose $K$ and $L$ are the mid-points of the chord $A B$ and $C D$ respectively. Prove that $O K M L$ is a parallelogram.
7. Find the number of all rational numbers $m / n$ such that
(a) $0<m / n<1$
(b) $m$ and $n$ are relatively prime
(c) $m n=25$ !
8. If $a, b$ and $c$ are positive real numbers such that $a+b+c=1$, prove that

$$
(1+a)(1+b)(1+c) \geq 8(1-a)(1-b)(1-c)
$$

