RMO-1991

1. Let P be an interior point of a triangle $A B C$ and $A P, B P, C P$ meet the sides $B C, C A, A B$ in D, E, F respectively. Show that

$$
\frac{A P}{P D}=\frac{A F}{F B}+\frac{A E}{E C}
$$

2. If a, b, c and d are any 4 positive real numbers, then prove that

$$
\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a} \geq 4
$$

3. A four-digit number has the following properties :
(a) it is a perfect square,
(b) its first two digits are equal to each other,
(c) its last two digits are equal to each other.

Find all such four-digit numbers.
4. There are two urns each containing an arbitrary number of balls. Both are non-empty to begin with. We are allowed two types of operations:
(a) remove an equal number of balls simultaneously from the urns, and
(b) double the number of balls in any one of them.

Show that after performing these operations finitely many times, both the urns can be made empty.
5. Take any point P_{1} on the side $B C$ of a triangle $A B C$ and draw the following chain of lines : $P_{1} P_{2}$ parallel to $A C\left(P_{2}\right.$ on AB), $P_{2} P_{3}$ parallel to $B C, P_{3} P_{4}$ parallel to $A B, P_{4} P_{5}$ parallel to $C A$, and $P_{5} P_{6}$ parallel to $B C$. Here P_{2}, P_{5} lie on $A B ; P_{3}, P_{6}$ lie on $C A$; and P_{4} on $B C$. Show that $P_{6} P_{1}$ is parallel to $A B$.
6. Find all integer values of a such that the quadratic expression

$$
(x+a)(x+1991)+1
$$

can be factored as a product $(x+b)(x+c)$ where b and c are integers.
7. Prove that $n^{4}+4^{n}$ is composite for all integer values of n greater than 1 .
8. The 64 squares of an 8×8 chessboard are filled with positive integers in such a way that each integer is the average of the integers on the neighbouring squares. (Two squares are neighbours if they share a common edge or a common vertex. Thus a square can have 8,5 or 3 neighbours depending on its position). Show that all the 64 integer entries are in fact equal.

