RMO-1990

1. Two boxes contain between them 65 balls of several different sizes. Each ball is white, black, red or yellow. If you take any 5 balls of the same colour at least two of them will always be of the same size (radius). Prove that there are at least 3 balls which lie in the same box have the same colour and have the same size (radius).
2. For all positive real numbers a, b, c prove that

$$
\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geq \frac{3}{2} .
$$

3. A square sheet of paper $A B C D$ is so folded that B falls on the mid-point M of $C D$. Prove that the crease will divide $B C$ in the ratio $5: 3$.
4. Find the remainder when 2^{1990} is divided by 1990 .
5. P is any point inside a triangle $A B C$. The perimeter of the triangle $A B+B C+C A=2 s$. Prove that

$$
s<A P+B P+C P<2 s
$$

6. N is a 50 digit number (in the decimal scale). All digits except the 26 th digit (from the left) are 1 . If N is divisible by 13 , find the 26 th digit.
7. A censusman on duty visited a house which the lady inmates declined to reveal their individual ages, but said - "we do not mind giving you the sum of the ages of any two ladies you may choose". Thereupon the censusman said - "In that case please give me the sum of the ages of every possible pair of you". The gave the sums as follows : $30,33,41,58,66,69$. The censusman took these figures and happily went away. How did he calculate the individual ages of the ladies from these figures.
8. If the circumcenter and centroid of a triangle coincide, prove that the triangle must be equilateral.
