RMO-2006

1. Let $A B C$ be an acute-angled triangle and let D, E, F be the feet of perpendiculars from A, B, C respectively to $B C, C A, A B$. Let the perpendiculars from F to $C B, C A, A D, B E$ meet them in P, Q, M, N respectively. Prove that P, Q, M, N are collinear.
2. Find the least possible value of $a+b$, where a, b are positive integers such that 11 divides $a+13 b$ and 13 divides $a+11 b$.
3. If a, b, c are three positive real numbers, prove that

$$
\frac{a^{2}+1}{b+c}+\frac{b^{2}+1}{c+a}+\frac{c^{2}+1}{a+b} \geq 3 .
$$

4. A 6×6 square is dissected into 9 rectangles by lines parallel to its sides such that all these rectangles have only integer sides. Prove that there are always two congruent rectangles.
5. Let $A B C D$ be a quadrilateral in which $A B$ is parallel to $C D$ and perpendicular to $A D ; A B=3 C D$; and the area of the quadrilateral is 4. If a circle can be drawn touching all the sides of the quadrilateral, find its radius.
6. Prove that there are infinitely many positive integers n such that $n(n+$ 1) can be expressed as a sum of two positive squares in at least two different ways. (Here $a^{2}+b^{2}$ and $b^{2}+a^{2}$ are considered as the same representation.)
7. Let X be the set of all positive integers greater than or equal to 8 and let $f: X \rightarrow X$ be a function such that $f(x+y)=f(x y)$ for all $x \geq 4$, $y \geq 4$. If $f(8)=9$, determine $f(9)$.
