RMO-2005

1. Let $A B C D$ be a convex quadrilateral; P, Q, R, S be the midpoints of $A B, B C, C D, D A$ respectively such that triangles $A Q R$ and $C S P$ are equilateral. Prove that $A B C D$ is a rhombus. Determine its angles.
2. If x, y are integers and 17 divides both the expressions $x^{2}-2 x y+$ $y^{2}-5 x+7 y$ and $x^{2}-3 x y+2 y^{2}+x-y$, then prove that 17 divides $x y-12 x+15 y$.
3. If a, b, c are three real numbers such that $|a-b| \geq c,|b-c| \geq a$, $|c-a| \geq b$, then prove that one of a, b, c is the sum of the other two.
4. Find the number of all 5 -digit numbers (in base 10) each of which contains the block 15 and is divisible by 15 . (For example, 31545, 34155 are two such numbers.)
5. In triangle $A B C$, let D be the midpoint of $B C$. If $\angle A D B=45^{\circ}$ and $\angle A C D=30^{\circ}$, determine $\angle B A D$.
6. Determine all triples (a, b, c) of positive integers such that $a \leq b \leq c$ and

$$
a+b+c+a b+b c+c a=a b c+1
$$

7. Let a, b, c be three positive real numbers such that $a+b+c=1$. Let

$$
\lambda=\min \left\{a^{3}+a^{2} b c, b^{3}+a b^{2} c, c^{3}+a b c^{2}\right\} .
$$

Prove that the roots of the equation $x^{2}+x+4 \lambda=0$ are real.

