

Solution:

Explanation:

We know that k is odd. Let k be $2 n+1$. Then at least 1 and at most n candidates can be awarded the prize. Hence ${ }^{k} C_{1}+{ }^{k} C_{2}+{ }^{k} C_{3}+\ldots+{ }^{k} C_{n}=63$. Adding ${ }^{k} C_{0}=$ 1 to both sides,
${ }^{k} C_{0}+{ }^{k} C_{1}+{ }^{k} C_{2}+{ }^{k} C_{3}+\ldots+{ }^{k} C_{n}=64$
Now ${ }^{k} C_{0}={ }^{k} C_{k}$ (i.e. ${ }^{k} C_{2 n+1}$) and so on hence we can say ${ }^{k} C_{0}+{ }^{k} C_{1}+{ }^{k} C_{2}+{ }^{k} C_{3}+$ $\ldots+{ }^{k} C_{k}=64+64=128$ i.e. $2^{k}=128$ i.e. $k=7$.
Alternatively,
if $\mathrm{n}=1, \mathrm{k}=3$
$\therefore{ }^{k} C_{0}+{ }^{k} C_{1}+\ldots .+{ }^{k} C_{n}={ }^{3} C_{0}+{ }^{3} C_{1}=1+3=4=2^{2}$
If $\mathrm{n}=2, \mathrm{k}=5$
$\therefore{ }^{k} C_{0}+{ }^{k} C_{1}+\ldots .+{ }^{k} C_{n}={ }^{5} C_{0}+{ }^{5} C_{1}+{ }^{5} C_{2}=1+5+10=16=2^{4}$
From pattern, if $\mathrm{n}=3, \mathrm{k}=7$ and ${ }^{k} \mathrm{C}_{0}+{ }^{k} \mathrm{C}_{1}+\ldots .+{ }^{k} \mathrm{C}_{1}=2^{6}=64$

