Q.3. Let a, b, c be three
real numbers such that 0<a, b, c<1n and a+b+c=2. Prove that
Solution:
Let 1 - a = x
thus a = 1 - x
1 - b = y
thus b = 1 - y
1 - c = z
thus c = 1 - z
since a + b + c = 2
thus 1 - x + 1 - y
+ 1 - z = 2
thus x + y + z = 1
thus a/(1-a) *
b/(1-b) * c/(1-c) = (1-x)/x * (1-y)/y * (1-z)/z
=
(z+y)/x * (x+z)/y * (x+y)/z
applying AM >= GM
z+y >= 2*(y*z)^(1/2)
x+y >= 2*(y*x)^(1/2)
z+x >= 2*(x*z)^(1/2)
thus
(z+y)*(y+x)*(x+z)/x*y*z >= { 2*(y*z)^(1/2)
* 2*(y*z)^(1/2) * 2*(y*z)^(1/2) }/x*y*z
>=
2*2*2 = 8
thus a/(1-a) * b/(1-b) * c/(1-c) >= 8.